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ABSTRACT 

Let A1,. �9 �9 An be central simple algebras over a field F. Suppose that 
we possess information on the Schur indexes of some tensor products of 
(some tensor powers of) the algebras. What can be said (in general) about 
possible degrees of finite field extensions of F splitting the algebras? In 
Part I, we prove a positive result of that kind. In Part II, we prove a 
negative result. In Part III, we develop a general approach. 

We are working with finite-dimensional central simple algebras over fields and 

using the s tandard  terminology concerning them. In particular, if A is such an 

algebra, the d e g r e e  of A is the squareroot of its dimension over the center, the 

i n d e x  of A is its Schur index (i.e. the minimal possible degree of a field extension 

of the center splitting A), and the e x p o n e n t  of A is the order of its class in the 

Brauer  group of the center. 

P a r t  I. A g e n e r a l i z a t i o n  o f  t h e  A l b e r t - R i s m a n  theorems  

Let A be a central simple algebra of a prime degree p over a field F and let 

B 1 , . . . ,  Bp-1 be central simple F-algebras of degrees p n l , . . .  ,pnp_~. We show 

that  if every tensor product  A |  Bz has zero divisors, then there exists a field 

extension E / F  of degree _< pn~+...+np_l which splits the algebras B 1 , . . . ,  Bp-1 

as well as the algebra A. In the case p = 2, this s ta tement  was proved in 1975 

by L. Risman ([19]); in the case p = 2 and nl = 1, it is a classical theorem of 

A. Albert  (see [1] or [2]). 
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O. Introduction 

A well-known theorem of A. Albert states (see [1] or [2]): if the tensor product 

of two quaternion algebras has zero divisors, then the quaternion algebras can 

be split by a common extension of the base field of degree ~_ 2. 

In 1975, L. J. Risman gave the following generalization of the Albert theorem 

([19, Theorem 1]): if the tensor product of a degree 2 n (where n ~_ 1) central 

simple algebra A and a quaternion algebra B has zero divisors, then A and B 

possess a common splitting field of degree < 2". 

Attempts to find a generalization of tile Risman theorem to the case of an odd 

prime p were unsuccessful for a long time. Even worse: in 1993 B. Jacob and A. 

R. Wadsworth ([9], see also Part II) had shown that already the Albert theorem 

has no generalization to the case of two degree p algebras. They found two 

degree p central simple algebras A, B with no common splitting field of degree 

p, possessing the following property: for any integers i , j  k 0 the index of the 

tensor product A | | B | was <_ p. 

We propose here the following generalization of the Risman theorem: 

THEOREM I. 1 : Let  A be a central simple algebra of  a prime degree p over a tield 

F and let B1, . . . ,  Bp_l be central s imple F-algebras of degrees p'~, . . . ,  p'~p-~. 
def 

Set n = nl  + . . . .  ~- rip-1 and suppose that for every i = 1 , . . .  ,p - 1 the tensor 

product  A |  B, has zero divisors. Then  there exists a field extension E l F  o f  

degree <_ pn which splits all the algebras A, B1, . . . , Bp_ 1. 

In the particular case where nl . . . . .  rip_ l = 1, Theorem I. 1 can be regarded 

as a generalization of the Albert theorem. For instance, taking p = 3 we get the 

following 

Example  1.2: Let A, B, C be three degree 3 central simple algebras over a field 

F. Suppose that each of the two tensor products A | B and A | C has zero 

divisors. Then there exists a field extension E l F  of degree _< 9 which splits all 

the three algebras A, B, C. 

In fact, a general method of obtaining results of the type similar to Theorem 

1.1 is developed in Part  III. However, this method allows one to control degrees 

of common splitting fields of algebras only up to a prime to p factor. In order to 

obtain the announced exact statement, we use here a refinement of that method. 

It is based on the intersection theory and especially on the theory of non-negative 

intersections developed in [5, Chapter 12] (see the proof of Proposition 1.4). 

Terminology and notation: Let F be a field. We fix an algebraic closure t ~ of F 

and, for any F-variety X, write )( for the F-variety X p .  
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Let a be a cycle on X. We write [a] for the class of a in the Chow group 

CH*(X) and ~ for the corresponding cycle on )(. Sometimes, while working on 

X • Y, where Y is another F-variety, abusing notation, we denote by (r as well 

the cycle a x Y. 

The degree deg(a) of a simple 0-dimensional cycle a is the degree of its residue 

field over the base field. The degree of an arbitrary 0-dimensional cycle a = 

l jaj,  where lj are integers and aj are simple cycles, is defined as ~ lj deg(aj). 

A cycle a = ~ ljaj (of any dimension) is called non-nega t ive ,  if all the 

integers lj are non-negative. 

1. Preliminaries 

In this section we prove two (independent) statements needed for the next section. 

LEMMA 1.3: For any integers n, m > O, let r : W x ~  r ~m+n+m be the Segre 

imbedding. Denote by f E C H I ( ~ ) ,  g E C H I ( ~ ) ,  and h E CHI(]t mm+"+m) 

the classes of hyperplanes. Then r = f + g C CHI(~ ~n x ]t~), where r : 

CH*(]t mm+"+m) -~ CH*(P  x ~ )  is the pull-back homomorphism. 

Proof." Denote by [x0 : " - : x n ] ,  [Y0 : ' " :  Ym], and [z0 : . - . :  Znm+,~+m] the 
coordinates in It m, I ~ ,  and ~m+,~+m. The Segre embedding r is determined by 

the rule 

(~([X0: " ' ' :  Xn] X [Y0 : ' ' ' :  Ym]) ~- [x0Y0:X0Yl : ' ' ' :  Xnym-1 :XnYm]. 

The intersection of the hyperplane z0 = 0 with ~n x IT ~ has two transversal 
components: one of them is determined in ll ~ x I ~  by the equation x0 = 0 

and represents f while the other one is determined by the equation Y0 = 0 and 

represents g. I 

PROPOSITION 1.4: Let T be a direct product of Severi-Brauer varieties over a 

field F. Let a and a r be non-negative cycles on T and let r : T ~ --4 T be a closed 

imbedding. Then 

(1) there exists a non-negative cycle T on T such that [T] = [a]. [a'] E CH*(T); 

(2) there exists a non-negative cycle T' on T' such that r = IT']. 

Proof: According to [5, Corollary 12.2a], both the assertions hold if the tangent 

bundle of T is generated by its global sections. In order to check this condition 

on the tangent bundle for a variety over F,  it suffices to check it over an extension 

of F,  e.g., over F.  Since the F-variety T is isomorphic to a direct product of 
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projective spaces, the tangent bundle of T is generated by its global sections (see 

[5, Examples 12.2.1a and 12.2.1c]). 

2. T h e  p r o o f  

In this section we prove Theorem 1.1. 

We denote by X, Y1,... ,Yp-1 and T1,. . .  ,Tp-1 the Severi-Brauer varieties of 

the algebras A, B 1 , . . .  ,Bp-1 and A | B1, . . .  , A  | Bp-1. We set 

p--1 
y d___ef / - [  y / .  

/=1 

For every /, the tensor product of ideals induces a closed imbedding ~bi: 

X • Yi ~ Ti which is a twisted form of the Segre imbedding i~ -1 • ]I ~p~ -1 
c_~ ]I:I~P n/'+l-1" 

Let f C CHI()f),  gi E CHI(~) ,  and hi E cn l (Ti )  be the classes of hyper- 

planes. 

The algebra A | Bi (for every i) has degree pn,+l and zero divisors, so that 

its index divides pn~. Therefore, there exists a simple (and in particular non- 

negative) p~,-codimensional cycle ai on the variety Ti such that [#i] = h~'"' E 

CH p~' (fi)  (see [3, w 

By item (2) of Proposition 1.4, there exists a non-negative cycle Ti on X x Yi 
hP ni 

such tha t  [ri] = r Since [#,] .-i , it follows from L e m m a  1.3 tha t  

[{i] = ( f  + gi) p'' 6 c n  p~' ()~ x ~ ) .  
Applying item (1) of Proposition 1.4 to the variety X • Y, we find a non- 

negative cycle T on X • Y such that [r] = IT1]''" [rp--1] 6 CH*(X x Y). Note 

that ~" is a cycle of codimension p~l + . . .  + p,~p-1 on a variety of dimension 

( p -  1) + (p~l _ 1) + . . .  + (pn~_~ _ 1) = p-a + . . .  + p~-x ,  so that it is a 0- 

dimensional cycle. Moreover, 

['~] -~- ['~1]""" ['rp--1] : ( Y  "~ g l )  p 'h  " " " ( f  "[- Op--1) pnp-1  

p n  z , ' . - 1  p"~- - I  . p'~P-* = " (. T~ gl "" gp-1 -1) ,  

where the last equality holds because of the relations fP = 0 and gP"~ = 0 (for 

i = 1 , . . .  , p -  1). Since i f - 1  is the class of a rational point on )f  and since g~",-1 

is the class of a rational point on the variety ~ for every i, we get deg(z) = pn. 

Let ~-' be any simple cycle included in Z. Since the cycle T is non-negative, we 

have deg(~-') ~_ pn. The residue field E of T' is a common splitting field of the 

algebras A, B 1 , . . .  ,Bp-1 and [E : F] = deg(T') <_ p'~. The proof of Theorem 1.1 

is complete. 
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Part II. Linked algebras 
Two central simple algebras A, B of a prime degree p over a field are called 

l inked,  if for any integers i , j  _> 0 the index of A | | B ~J is at most p. They 

are called s t r o n g l y  l inked,  if they possess a common splitting field of a finite 

degree (over the base field) not divisible by p2. 

We show that for any two not strongly linked central simple algebras, an 

extension of the base field can be made such that the algebras become l inked 

while still being not s t r o n g l y  linked. 

The initial idea to attack the problem using the 0-dimensional Chow group of 

the product of Severi-Brauer varieties was proposed to the author by 

O. Izhboldin. 

O. I n t r o d u c t i o n  

As already mentioned in Part I, in 1931 A. Albert proved (see [1] or [2]): two 

quaternion division algebras can be split by a common quadratic extension of the 

base field provided that their tensor product has zero divisors. 

Attempts to generalize the theorem of Albert to the case of an odd prime 

p led in 1987 to counter-examples of J.-P. Tignol anti A. R. Wadsworth ([22, 

Proposition 5.1]), who constructed two degree p central division algebras A, B 

with zero divisors in A | B and without common splitting field extensions of 

degree p. 

Stronger counter-examples was obtained in 1993 by B. Jacob and A. R. Wads- 

worth ([9]). They found two degree p central division algebras A,B without 

common splitting field of degree p possessing the following property: for any 

integers i , j  >_ 0 tile index of the tensor product A | | B | was _< p. It was in 

fact even shown that any common splitting field of the algebras A, B has degree 

divisible by p2 ([9, Remark 2]). 

In this Part we show (see Theorem II.1) that similar counter-examples can be 

obtained by an appropriate base extension starting from any two degree p central 

simple algebras A, B provided that the degree of every common splitting field of 

A, B is divisible by p2 (which is guaranteed, e.g., if the tensor product A | B is 

a division algebra). The proof is essentially different from that of [9]. 

Notation: Let F be a field and let X be a smooth variety over F. We write K ( X )  

for the Grothendieck group of X; K ( X )  (n), where n _> 0, for the n-codimensional 

term of the topological filtration on X (see [18, w for a definition of the topo- 

logical filtration, which is called the f i l t r a t ion  by c o d i m e n s i o n  o f  s u p p o r t  

in the reference); CH ' (X)  for the Chow ring of X graded by codimension of 
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cycles; CH0(X) for the 0-dimensional component of the Chow ring, i.e. for the 
component CH dim X(X). 

Let A be a central simple F-algebra. We write SB(A) for the Severi-Brauer 

variety of A and SB(r, A) (with r > 0) for the generalized Severi-Brauer varieties 

(also called gener ic  par t i a l  sp l i t t ing  variet ies)  of A. 

1. T h e  t h e o r e m  

Throughout this Part, A, B are central simple algebras of a prime degree p over 

a field F. We call them linked, if ind(A |174  | <_ P for any i , j  > O. 
The algebras A and B are called s t rong ly  l inked, if there exists a finite field 

extension E / F  such that 

�9 the algebras AE and BE are split, and 

�9 the degree [E : F] is not divisible by p2. 

Clearly, strongly linked algebras are linked. By the theorem of Albert, the 

inverse is true for p -- 2. For any odd p, we shall prove the following 

THEOREM II . l :  LetF beafield, p beanoddprimenumber, andA, B bedegree 
p central simple F-algebras. Suppose that A, B are not strongly linked. Then 
there exists a field extension F / F  such that the algebras Ak, Bp are linked but 
still not strongly linked. 

One can take as F the function field F(T) of the following product of 

generalized Severi-Brauer varieties: 

T de f SB(p, A | B) x SB(p, A | | B) x - - -  • SB(p, A | | B). 

2. P r e l i m i n a r y  observa t ions  

We set X deU SB(A) x SB(B). Let L/F be an arbitrary common splitting field 

extension of A, B. 

LEMMA II.2: The algebras A, B are not strongly linked if and only if the image 
of the restriction homomorphism CH0(X) --+ CH0(XL) is divisible by p2. 

Proof: Notd that since the algebras AL, BL are split, the variety XL is iso- 
morphic to a product of two projective spaces. Therefore the degree map deg: 

CHo(XL) --+ Z is an isomorphism. Also note that the composition CH0(X) --+ 

CH0(XL) ~ Z of the restriction and degree maps is the degree map for CH0(X). 
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If the image of the restriction homomorphism CH0(X) -+ CH0(XL) is not 

divisible by p2, then there exists a closed point on X of degree not divisible by 

p2. The residue field of this point is a common splitting field for A and B showing 

that the algebras are strongly linked. 

To prove the inverse implication, suppose the image of the restriction homo- 

morphism CH0(X) --4 CH0(XL) is divisible by p2. Then the image of the degree 

homomorphism deg : CH0(X) ~ Z is divisible by p2 as well. Let E / F  be any 

finite field extension such that the algebras AE,BE are split. The variety XE 

has then a rational point. Taking the transfer, we obtain a 0-dimensional cycle 

of degree [E : F] on X. Consequently, [E : F] is divisible by p2, i.e. the algebras 

A, B are not strongly linked. | 

LEMMA II.3: If  the algebras A, B are not strongly linked, then, for any not 

simultaneously 0 integers 0 <_ i, j < p, the index of the tensor product A | | B | 

is divisible by p. 

Proof: Let i , j  be any integers such that 0 _< i , j  < p. Suppose that the tensor 

product A | | B | is split. If i # 0, then any splitting field of B splits A as well; 

therefore the algebras A, B possess a common splitting field of degree p in this 

case, which contradicts the assumption they are not strongly linked. Thus i = 0. 

The symmetric argument shows that j = 0 as well. | 

LEMMA II.4: Suppose that, for any not simultaneously 0 integers 0 < i , j  < p, 

the index of tensor product A | | B | is divisible by p. Then the image of the 

restriction homomorphism K ( X )  (~) -~ K(XL)  (1) is divisible by p. 

Proof: We have already noticed that since the algebras AL and B L are  split, the 

varieties SB(AL) and SB(BL) are isomorphic to ( ( p -  1)-dimensional) projective 

spaces. Let {, ~ be the Grothendieck classes of the tautological line bundles on 

SB(AL),SB(B)L respectively. The group K(XL) is generated by {~ry}i,j=0.P-1 

Using the generalized version [17, Proposition 3.1] of Quillen's computation of 

K-theory for Severi-Brauer schemes [18, Theorem 4.1 of w one can show that 

the image of the restriction map K ( X )  --4 K(XL)  is generated by 

{ind(A | | B| �9 ~izlJ}P,~l=o . 

Since the first term of the topological filtration coincides with the kernel of the 

rank map, the group K(XL)  (1) is generated by {~i~/j p-1 - 1}i,j=0 while the image 
p--1 of K(X)  (1) --4 K(XL)(1) is generated by {ind(A | | B| �9 ((i~j _ 1)}i,/=0" 
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The assertion required follows now from the ~ssumption on the indexes 

ind(A ~ | B ~ ) .  I 

COROLLARY II.5: In the conditions of Lemma II.4, for any n > O, the image of 

the restriction homomorphism CH'~(X) ~ CHn(XL) is divisible by p. 

Proo~ For any n _> 0, there is a commutative diagram 

CHn(XL) , K(XL)(~) /K(XL)(  n+l ) 

Cn~(X) . K ( X ) ~ , ~ / K ( X ) ( ~ + ~  

where the horizontal arrows are the canonical epimorphisms (see [21, w for their 

definition and basic properties). Since XL is a direct product of projective spaces, 

the groups CHn(XL) are torsion-free (see, for example, [7, w of Chapter A]), 

whereas the upper arrow is an isomorphism. Therefore, it suffices to show that 

for any n > 0 the image of the restriction homomorphism K ( X )  ('0 ~ K(XL)  (n) 

is divisible by p. By Lemma II.4, the' image of K ( X )  (~) -~ K(XL)  (l) is divisible 

by p. Since the quotient K(XL)  (]/n) is torsion-free, we are done. 1 

3. T h e  p r o o f  

In this section we prove Theorem II.1. 
We set F d=ef F(T),  ,4 debf m~,, and /~ def B[~., where T is the product of 

generalized Scveri-Brauer varieties written down at the end of Section 1. Wc 

also set X '~f SB(A) x SB(B) and 2 d~_f SB(A) x SB(/~). 

First of all we note that by the main property of generalized Severi Brauer  vari- 

eties one has ind(/l | | /~) _< p for any i = 1 , . . . , p  - 1. Therefore 

ind(,4 | |174 <_ p for any integers i , j  >_ O, i.e. tile algebras A,/~ are linked. 

So we only have to show that they are not strongly linked. 

LEMMA II.6: For any not simultaneously 0 integers 0 _< i, 2 < p, the index of 

tensor product ~| | [~$j is divisible by p. 

Proof: First of all, by Lemma II.3, the assertion holds for the algebras A, B 

(instead of ,4,/~), because they are assumed to be not strongly linked. Applying 

the computation [4, Theorem 7]* of the relative Brauer group of the function 

* See also [15, Corollary 2.7] where this computation is done in a more general con- 
text; it is also an easy consequence of the index reduction formula [20, Theorem 
2.13] (see the footnote in the proof of Lemma III.2). 
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field of a generalized Scveri Brauer variety, one sees that the relative Brauer 

group ker (Br(F)  ~ Br(F(T)))  of the function field of the variety T is trivial. 

Therefore the assertion on .4,/~ holds as well. II 

Let L / F  be a common splitting field extension for the algebras A, B. Set 

], d~f L(T). Clearly, ] , /F  is a common splitting field extension for A,/3. 

COROLLARY II.7: For any n > O, the image of the restriction bomomorpbism 

CH'~()() --+ CHn(.~'L) is divisible by p. 

Proof: Follows from Lemma II.6 and Corollary II.5. II 

We consider the graded ring CH*(.~ ~) as a graded CH*(X)-algebra via the 

restriction homomorphism CH* (X) -~ CH* ()(). 

PROPOSITION 11.8: The CH*(X)-algebra CH*(,(') is generated by its graded 

components of codimensions <_ p. 

Proof: Since the pull-back CH*(X x T) --+ CH~ ~) is an epimorphism of graded 

CH*(X)-algebras (see [12, Theorem 3.11 or /8, Proposition 5.1]), it. suffices to 

show that the algebra CH*(X x T) is generated by its graded components of 
codimensions _< p. 

Consider the variety X x T as a scheme over X via the projection. According 

to [11, Proposition 5.3], it is a product (over X) of p-grassmanians. By [5, 

Proposition 14.6.5], CH*(X x T) is therefore generated (as a CH*(X)-algebra) 

by the Chern classes of the tautological bundles on the grassmanians. Since 

all these bundles have rank p, they may have non-trivial Chern classes only in 
codimensions <_ p. | 

Finally. Theorem II.1 follows from Lemma II.2 and the following assertion: 

COROLLARY II.9: The image of the restriction CHo()~ ~) -~ CH0(.~'L) is divisible 
by p2. 

Proof: Note that since p :~ 2, we have p < ( p -  l) 2 = d imX.  Thus, by 

Proposition II.8, the group CH0()() is generated by the image of CH0(X) 

CH0()[) and by the products CH'~()() �9 CH"( ) ( )  with n ,m  > O. 

The image in CH0()~L) of the first part of the generators is divisible by p2, 
since in the commutative diagram 

CH0(X) , CH0(XL) 

T T 
CHo(X) , CHo(XL) 
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the image of the bottom arrow is divisible by p2 (Lemma II.2). 

The image in CH0()~L) of the second part of the generators is divisible by p2, 

since for any n > 0 the image of CHn()() ~ CHn()(L) is divisible by p (Corollary 

II.7). | 

Part III. A general approach 

For every prime number p and every map c~: Z" -~ Z, we find the mini- 

mal integer/3 such that the following assertion holds: any elements x l , . . .  ,x~ 

of the Brauer group Br(F)  of an arbitrary field F,  satisfying the conditions 

ind(i lxl  + . . .  + inX,~) = p~(i~ ..... ~'~) for all i l , . . .  ,in E Z, possess a finite com- 

mon splitting field extension E / F  with vp([E : F]) _< /3, where Vp denotes the 

multiplicity of p. 

0. Introduction 

Let us fix a prime number p. Let a: Z n -+ Z be an arbitrary map. We say 

that  c~ is the behaviour of elements Xl , . . .  ,xn of the Brauer group Br(F)  of a 

field F,  if for any i l , - . .  ,in E Z the Schur index ind(ilxl  + - . .  + inXn) equals 

p~(~l ..... i~). We say that a is a b e h a v i o u r ,  if there exists a field F and elements 

x l , . . . ,  x~ E Br(F)  with the behaviour a. 

Let F be a field and x E Br(F).  A sp l i t t i ng  field of x is by definition a field 

extension E of F such that xE -- 0 C Br(E). A common splitting field of 

several elements of Br(F)  is by definition a field which is a splitting field for each 

of the elements. We consider only (common) splitting fields f in i te  over the base 

field. 

Let us fix a behaviour a. In this note we determine the minimal integer fl such 

that  the following assertion holds (see Theorem III.5): if some elements in the 

Brauer group of an arbitrary field F have the behaviour a, then they possess a 

common splitting field E with vp([E: F]) </3. 

Similar questions were considered earlier in the literature. Here is a list of 

known results: 

1. A classical theorem of Albert (see [1] or [2]) states: if the tensor product of 

two quaternion division algebras has zero divisors, then the quaternion algebras 

possess a common splitting field quadratic over the base field. 

2. A generalization of the Albert theorem due to Risman ([19, Theorem 1]) 

asserts: if the tensor product of a 2-primary division algebra A and a quaternion 

algebra B has zero divisors, then A and B possess a common splitting field of 

degree deg A. 
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3. Jacob and Wadsworth ([9], see also Part II) constructed two division algebras 

of prime degree p over certain field F such that 

�9 ind(A | | B | <_ P for any i , j  >_ O, and 

�9 the degree of any common splitting field of A and B is divisible by p2. 

4. The following was noticed by M. Rost (unpublished). Three quaternion 

algebras, such that the Brauer class of any tensor product of some of them is 

represented by a quaternion algebra as well, cannot be (in general) split by a 

common quadratic extension of the base field. 

5. A generalization of the Risman theorem to the case of an odd prime is obtained 

in Part I. 

Note that  the theorem presented here does not assert existence of a common 

splitting field of degree pZ. We do not even know whether such an assertion 

is true in general. However, in certain particular cases (this means, for certain 

concrete behaviours) the proof can be refined in order to get the stronger result. 

An example is the theorem of Part I. 

Notation: Let X be a smooth variety over a field F. As in Part II, we write 

K(X) for the Grothendieck group of X. Besides, we write FoK(X) for the 

0-dimensional term of the gamma-filtration, on K(X) (for a definition of the 

gamma-filtration, see [13, Definition 8.3] or [10, Definition 2.6]); To g ( x )  for the 

0-dimensional term of the topological filtration on X. We fix an algebraic closure 

T' of F and write )( for the F-variety X~. 

For any projective homogeneous variety X, we identify K(X) with a subgroup 

in K()~) via the restriction homomorphism K(X) --~ K(f() which is injective by 

[16]. 
The order of a finite set S is denoted by IS[. 

As in Part II, we write SB(A) for the Severi-Brauer variety of a central simple 

F-algebra A and SB(r, A) (r _ 0) for the generalized Severi-Brauer varieties of 

A. 

1. " G e n e r i c "  a lgebras  of  given behaviour 

For any central simple algebras A1 , . . . ,An  over a field F,  we define their 

behaviour to be the behaviour of their classes in the Brauer group of F.  

As in [11, D6finition 3.5], we say that algebras A1, . . . ,  An are d is jo in t  if, for 

any integers i l , . . . ,  in _> 0, 

ind(A | ~ F " "  @F A | = ind(A | ind(A | 
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We say that  a collection of algebras -A1,.. . ,An is "gene r i c "  (compare to 

[11, D~finition 5.4]), if it can be obtained via the following procedure. We start 

with some disjoint central simple algebras A1, . . .  ,An over a field F such that 

indAj = expAj for every j = 1 , . . . , n .  Then we take some central simple 

algebras B I , . . . ,  B,~ whose Brauer classes lie in the subgroup of Br(F)  gener- 

ated by the Brauer classes of A1, . . .  ,An. We denote by Y the direct product 

SB(rl ,  A1) x . . .  x SB(rm, Am) of generalized Severi Brauer varieties with some 

r l , . . .  ,r,~ >__ 0 and we set .4i ~ f  (Ai)F(y) for each i = 1, . . .  ,n. 

PROPOSITION II I . l :  For any behaviour a: Z n --+ Z, there exist "generic" 

division algebras -41,..., An (over a suitable field F) having the behaviour a. 

We prove the proposition after the following 

LEMMA III.2: Let A, B be central simple algebras over a held F and let A t, B ~ 

be central simple algebras over a field F I. Suppose that deg B = deg B ~ and that, 
for any i >_ O, the index of A t | B r| divides the index of A | B | Then, for 

any r > O, the index of A~F,(SB(r,B,)) divides the index Of AF(sB(r,B)). 

Proo~ Set s d_~f deg B = deg B t and denote by d the greatest common divisor 

of r and s. By the index reduction formula for the function fields of generalized 

Severi-Brauer varieties [20, Theorem 2.13],* one has 

ind(AF(sB(r,B))) = gcdl<i<s (gcd~i,d) ind(A Q B| �9 

Replacing A by A ~ and B by B', we get a formula for ind(A~,(SB(~,B,)) ). Since 

ind(A' @ B '| divides ind(A | B | for any i, we are done. II 

Proof of Proposition III.l: We start with disjoint division algebras A1 , . . . ,  An 

over a suitable field F such that for any j = 1 , . . .  ,n  one has 

degAj = expAj = pa(0,...,0,1,0 ..... 0), 

where 1 (in the argument of a) is placed on the j - th  position (algebras like that 

do definitely exist). For every i l , . . .  ,in with 0 <_ ij < degAj,  we consider the 

algebra 
Bii...i, de2 A~ i' |  | A~ i~ 

�9 An index reduction formula for the generalized Severi-Braucr varieties was first 
established by A. Blanchet in [4]. The simpler formula which is used here was 
found by D. Saltman and proved in a different way in [20]. A. Wadsworth deduced 
this simple formula from Blanchet's formula in [23]. We refer also to [14], where 
the simple formula is reestablished in a more general context. 
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and denote by Y/x...i~ the variety SB(p ~(i' ..... i,~), Bil...i,~). We set Y de_f l-I YQ...in 
and Aj def (A j )F (y )  for all j = 1,..~. ,n. We state A1, . . .  'An are the "generic" 

division algebras required. 

To show that ind(il[A1] + - - .  + in[An]) = P~(~ ..... '=) for all i l , . . . , i n  C Z, it 

suffices to check that  

" - ~ i l  A ~ $ n )  pC~ ('~ 1 . . . . .  in) ind(A I | 1 7 4  = 

for any i l , . . .  , in with 0 _< ij < degAj.  Since the inequality _< is evident, it 

suffices to prove the inverse inequality. 

Since a is a behaviour, we can find division algebras ' A1, . . .  ,A n over a field 

F t having the behaviour a. Clearly, for any i l , . . . , i n  >_ O, the index of the 
! def Al@lil I| pa(il,...,i~) algebra Bil...i  ~ = | . . .  | A n equals and divides the index 

of the algebra Bi~...i~ (while their degrees coincide). Let us choose some in- 
. * I .. "' with 0 < " < degAS. By Lemma III.2, lnd(Bil . . . i~)F,(y~. . .e)  tegers z~,. ,~n sj  - 

divides ind(Bil...i~)F(yq...e), where Y~...i, ~ f  SB(p ~(q ..... i ' ) ,  B~i...i,). Moreover, 

the extension F ' ( Y ~ . . . e ) / F  does not in fact affect the index of any F'-algebra, 

because the variety Y~...e is rational. Therefore, the index of B~...i~ itself divides 

ind(Bil...i, ) F(Yi]., .iln )" 
So we see that  if we replace the base field F of the algebras A1,.. �9 A~ by the 

function field F(Yfi...i,~), the index of every Bi~.../, is still divisible by pa( i i  ..... i~).  

After that we pass to the function field of another variety Yq,...ig. Proceeding 

in this way, we get in the end' the required statement on the indexes. II 

2. Def in i t ion  o f  ~3 

We fix a prime number p and a behaviour a: Z n -+ Z. 

Let us consider a field F and elements X l , . . . ,  xn E Br(F)  with the behaviour 

a. Choose division F-algebras representing the elements x l , .  �9 x,~ and denote 

by XI~ . . . ,  Xn the corresponding Severi-Brauer varieties. Set X d___a X1 x . . .  x Xn. 

Since ) f  is isomorphic to a direct product of projective spaces, FoK()( )  is 

an infinite cyclic group generated by the class of a rational point. We have 

0 ~ FoK(X)  C FoK()f )  ~- Z. Therefore, the quotient F o K ( f ( ) / F o K ( X )  is a 

finite group. 

Defini t ion III.3: We put ~ d=ef vp(iroK(R)/rog(X)l). 
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LEMMA III.4: The integer/3, defined in Definition 111.3, depends only on the 

prime p and on the behaviour a; it does not depend on the choice of the field F 

and the elements x l , . . . ,  xn E Br(F).  

Proof'. According to [11, Corollaire 2.2t, the groups FoK(X)  and FoK()f )  

depend only on p and on the behaviour of x l , . . . ,  x~. | 

3. T h e  t h e o r e m  

THEOREM III.5: For a prime number p and a behaviour a: Z ~ -+ Z, let/3 be 

the integer defined in the previous section. Then 

(1) for any field F,  any n elements x l , . . .  ,xn E Br(F)  with the behaviour c~ 

possess a common splitting field E l F  satisfying the condition 

vp([E : F]) </3; 

(2) there exists a field F and elements X l , . . . ,  x~ E Br(F) with the behaviour 

a such that all their common splitting fields E l F  satisfy the condition 

vv([E: F]) >/3. 

We prove the theorem after the following 

LEMMA III.6: Let A1, . . . ,  A~ be central simple algebras over a field F and let 

X b .  �9 X,~ be the corresponding Severi-Brauer varieties. Set X de=f X1 x . . . • X~ 

and/3' ~ f  v v ( 1 T o K ( f Q / w o g ( x ) t  ). Then: 

(1) for any common splitting field E / F  o[ A1 , . . .  , An, 

vA[E: F]) >/3'; 

(2) the algebras A1, . . . ,  An possess a common splitting field E / F with 

vp([E : F]) --/3'. 

Proof." For any variety Y, To K ( Y )  is by definition the subgroup of K ( Y )  gen- 

erated by the classes [y] E K ( Y )  of the closed points y E Y. If Y is a complete 

F-variety, the rule [y] ~ deg(y) de_=__f [F(y) : F], where F(y)  is the residue field 

of y, determines a well-defined homomorphism deg: To K ( Y )  ~ Z (compare 
to [7, Corollary 6.10 of Chapter II]). Note that the composition To K ( Y )  

To K(12) ~ Z of the restriction homomorphism with the degree homomorphism 

for l ) coincides with the degree homomorphism for Y. 
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Since )( is isomorphic to a direct product of projective spaces, the homomor- 

phism deg : To K()()  --+ Z is bijective. In particular, since To K(X) is a non-zero 

subgroup of T0 K(Ar), we see that the quotient To g(f ( ) /To K(X) is finite. 

(1) If E is a common splitting field of the algebras A1, . . . ,  An, the variety XE 
has a closed rational point. Therefore, there exists a zero-cycle on X of degree 

[E : F]. It follows that the order of the quotient To K(f()/To K(X) divides 

[E: F]. In particular, vv([E: F]) _> ~'. 

(2) It follows from the definition of ~ and the above discussion that there exists 

a zero-cycle ~r = Ei~=l ti~ri on X (where li �9 Z and ai �9 X) with vp(deg(~r)) = ~'. 

Since 
7" 

deg(~) a.__~ ~ li deg(~d, 
i = 1  

one has vp(deg(ai)) <_ ~' for certain i. Denote by E the residue field of the point 

ai. Since the variety XE possess a rational point, E is a common splitting field 

of the algebras A1,. . . ,Am. Therefore, by item (1), Vp([E : F]) _> ~'. On the 

other hand, Vp([E: F]) = %(deg(ai)) < ~'. Thus %([E:  F]) = ~'. | 

Proof of Theorem 111.5: (1) Let x l , . . . ,  xn be some elements with the behaviour 

a in the Brauer group of a field F. Consider the variety X as in Definition III.3. 

According to item 2 of Lemma III.6, the elements x l , . . . ,  xn possess a common 

splitting field ElF  with Vp([E: F]) =/3 '  def Vp([ TO g() ( ) /W0 K(X)[). On the 

other hand, fl = vp(rog(2)/roK(X)) by Lemma III.4. Since 

To K()( )  -- r0K(2) and To K(X) D r0K(X)  

(see [6, Theorem 3.9 of Chapter V] for the second relation) the order of the 

quotient To K(f()/To K(X) divides the order of the quotient FoK(fi)/FoK(X). 
Therefore/~' </~ and consequently w([E : F]) _< ~3. 

(2) Let x l , . . . ,  x~ be the Brauer classes of some "generic" division algebras 

with the behaviour a (which exist by Proposition III.1). Let X be the product 

of the Severi-Brauer varieties of these division algebras. By item (1) of Lemma 

III.6, vp([E : F]) > ~' for any common splitting field ElF of x l , . . .  ,x~. By [11, 

Th~or~me 5.5], one has To g ( x )  = r 0 g ( x ) .  Therefore f~' = ft. | 
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